Case Report

Massimo Mesolella*, Filippo Ricciardiello, Domenico Tafuri, Roberto Varriale, Domenico Testa

Delayed recurrent nerve paralysis following post-traumatic aortic pseudoaneurysm

DOI 10.1515/med-2016-0041
received January 6, 2016; accepted March 7, 2016

Abstract: Blunt trauma to the neck or to the chest are increasingly observed in the emergency clinical practice. They usually follow motor vehicle accidents or may be work or sports related. A wide pattern of clinical presentation can be potentially encountered. We report the uncommon case of a patient who was referred to our observation presenting with hoarseness and disphagia. Twenty days before he had sustained a car accident with trauma to the chest, neck and the mandible. Laryngoscopy showed a left recurrent laryngeal nerve palsy. Further otolaryngological examination showed no other abnormality. At CT and MR imaging a post-traumatic aortic pseudoaneurysm was revealed. The aortic pseudoaneurysm was consequently repaired by implantation of an endovascular stent graft under local anesthesia. The patient was discharged 10 days later. At 30-days follow-up laryngoscopy the left vocal cord palsy was completely resolved.

Hoarseness associated with a dilated left atrium in a patient with mitral valve stenosis was initially described by Ortner more than a century ago. Since then several non malignant, cardiovascular, intrathoracic disease that results in embarrassment from recurrent laryngeal nerve palsy usually by stretching, pulling or compression; thus, the correlations of these pathologies was termed as cardiovocal syndrome or Ortner’s syndrome. The reported case illustrates that life-threatening cardiovascular comorbidities can cause hoarseness and that an impaired recurrent laryngeal nerve might be correctable.

Keywords: Recurrent nerve paralysis, aortic pseudoaneurysm, Ortner’s syndrome, cardiovocal syndrome

1 Introduction

Vocal cord paralysis is a common disease in the practice of otolaryngology. Many disease entities in the head, neck and thorax regions can cause recurrent laryngeal nerve paralysis, including ectopic dislocations, inflammatory, neoplastic, cerebrovascular, heart, degenerative and other conditions such as trauma [1-3]. Blunt trauma to the neck or to the chest are increasingly observed in the emergency clinical practice. They usually follow motor vehicle accidents, or may be a consequence of job or sport practice. A wide pattern of clinical presentation can be potentially encountered.

The recurrent paralysis of vocal cords is not only a disease entity but may also be a symptom of other disorders (central or peripheric pathologies, non-surgical or surgical paralysis etc). Patient with unilateral recurrent laryngeal nerve paralysis complain of hoarseness and occasional liquid aspiration. Ortner described hoarseness of voice to the left recurrent laryngeal nerve palsy in three patients with severe mitral stenosis [4]. Although it was initially associated with mitral stenosis, several other case reports suggested that hoarseness can be caused and associated by numerous cardiovascular pathologies [5,6]. In particular, these can be congenital conditions (atrial and ventricular septal defect, aortopulmonary window, double outlet right ventricle) [7-9], adult disorders (left atrial enlargement, left ventricular aneurysm, thrombosed giant left atrium [10], atrial myxoma [11], aortic aneurysms [12-14] or pseudoaneurysms [15]), iatrogenic lesions...
216
Massimo Mesolella et al

(cardiac surgery [16,17], thoracic surgery [18], atrial fibrillation ablation procedure [19]). The termed “cardiovocal syndrome” was used in these cases [6,19].

We report the uncommon case of a patient who had undergone a chest and neck blunt trauma: after twenty days he presented with hoarseness and dysphonia. The left recurrent laryngeal nerve palsy secondary to a post-traumatic aortic pseudoaneurysm was revealed.

2 Case report

A 40-year old male, was referred to our observation presenting with hoarseness and dysphagia. Twenty days before he had sustained a car accident with trauma to the chest, the neck and the mandible. He had been submitted to a plain film of the chest, revealing the fractures of the 6th right rib, the 6th and 7th left ribs.

Fiber laryngoscopy showed an immobile left vocal cord in the paramedian position compatible with left recurrent laryngeal nerve paralysis. Further otolaryngological examination showed no abnormality. The laboratory findings were normal. In the potential suspect of an aortic injury, the patient underwent contrast material-enhanced spiral computer tomography (CT) of the chest. Moreover, because of its superior capability in depiction of functional information regarding flow patterns and luminal communications, MR imaging of the chest was also performed. At CT, MR and angioMR imaging a post-traumatic aortic pseudoaneurysm was revealed: concomitant compression of the left broncus was shown as well (Fig. 1, 2). The aortic pseudoaneurysm was consequently repaired by implantation of an endovascular stent graft under local anesthesia. The patient was discharged 10 days later, and at the 3-years follow-up visit the hoarseness and the dysphonia had resolved completely.

Ethical approval: The research related to human use has been complied with all the relevant national regulations, institutional policies and in accordance the tenets of the Helsinki Declaration, and has been approved by the authors’ institutional review board or equivalent committee.

Informed consent: Informed consent has been obtained from all individuals included in this study.

3 Discussion

The association of vocal cord dysfunction with thoracic aortic aneurysm has been reported in the cardiovascular and otolaryngologic literature [4,5,6,8,21-23]. The recurrent laryngeal nerve in its course from the brain stem to the larynx follows a path that brings it in proximity to numerous structures. These structures can interfere with its function by pressure or by disruption of the nerve caused by disease invading the nerve. Indeed, a recurrent laryngeal nerve paralysis can be related to multiple causes. Malignant neoplasms of the lung and pulmonary tuberculosis are most frequent causes of the paralysis. Idiopathic paralysis are also very frequent; paralysis caused by thyroid surgery [2,3] and endotracheal intubation come next. Ortner’s syndrome [4], also known as cardiovocal syndrome, is a rare clinical entity that is manifested by hoarseness due to left recurrent laryngeal nerve palsy secondary to cardiovascular disease. Thoracic aortic aneurysms are usually asymptomatic [24,25]. In a retrospective

216 — Massimo Mesolella et al

Ethical approval: The research related to human use has been complied with all the relevant national regulations, institutional policies and in accordance the tenets of the Helsinki Declaration, and has been approved by the authors’ institutional review board or equivalent committee.

Informed consent: Informed consent has been obtained from all individuals included in this study.

3 Discussion

The association of vocal cord dysfunction with thoracic aortic aneurysm has been reported in the cardiovascular and otolaryngologic literature [4,5,6,8,21-23]. The recurrent laryngeal nerve in its course from the brain stem to the larynx follows a path that brings it in proximity to numerous structures. These structures can interfere with its function by pressure or by disruption of the nerve caused by disease invading the nerve. Indeed, a recurrent laryngeal nerve paralysis can be related to multiple causes. Malignant neoplasms of the lung and pulmonary tuberculosis are most frequent causes of the paralysis. Idiopathic paralysis are also very frequent; paralysis caused by thyroid surgery [2,3] and endotracheal intubation come next. Ortner’s syndrome [4], also known as cardiovocal syndrome, is a rare clinical entity that is manifested by hoarseness due to left recurrent laryngeal nerve palsy secondary to cardiovascular disease. Thoracic aortic aneurysms are usually asymptomatic [24,25]. In a retrospective

216 — Massimo Mesolella et al

Ethical approval: The research related to human use has been complied with all the relevant national regulations, institutional policies and in accordance the tenets of the Helsinki Declaration, and has been approved by the authors’ institutional review board or equivalent committee.

Informed consent: Informed consent has been obtained from all individuals included in this study.

3 Discussion

The association of vocal cord dysfunction with thoracic aortic aneurysm has been reported in the cardiovascular and otolaryngologic literature [4,5,6,8,21-23]. The recurrent laryngeal nerve in its course from the brain stem to the larynx follows a path that brings it in proximity to numerous structures. These structures can interfere with its function by pressure or by disruption of the nerve caused by disease invading the nerve. Indeed, a recurrent laryngeal nerve paralysis can be related to multiple causes. Malignant neoplasms of the lung and pulmonary tuberculosis are most frequent causes of the paralysis. Idiopathic paralysis are also very frequent; paralysis caused by thyroid surgery [2,3] and endotracheal intubation come next. Ortner’s syndrome [4], also known as cardiovocal syndrome, is a rare clinical entity that is manifested by hoarseness due to left recurrent laryngeal nerve palsy secondary to cardiovascular disease. Thoracic aortic aneurysms are usually asymptomatic [24,25]. In a retrospective
study of 62 patients with thoracic aortic aneurysms, only one patient (1.6%) manifested hoarseness secondary to recurrent nerve palsy [26]. In case of aortic aneurysm, the incidence of left recurrence laryngeal nerve paralysis has been reported as 5% to 12% [26-28]. Among unusual causes, post-traumatic pseudoaneurysms of the thoracic aorta presenting at a time remote from the original injury are a rare but complex problem. In patients with recurrent laryngeal nerve paralysis, the left recurrent nerve is most commonly involved with respect to the right laryngeal nerve [5]. Left recurrent laryngeal nerve paralysis has been reported in approximately 10% of patients who survive long enough to develop a pseudoaneurysm [6], but the time of onset has rarely been specified. Woodson [20] reported 50 cases of thoracic aortic trauma reviewed to determine the incidence and timing of laryngeal paralysis, and compared with 50 cases of atherosclerotic aneurysms matched for location. Four patients in the traumatic group were hoarse, and the onset was immediate in 3. Six in the atherosclerotic group became hoarse. Their results indicate that laryngeal paralysis following severe trauma can be a very early sign of aortic injury and requires prompt and thorough investigation [29,30]. Similarly, in the case of a delayed presentation of a post-traumatic vascular injury, rapid diagnosis is of great importance, considering its unpredictable evolution. Razzouk et al. [15], reported 17 patients with pseudoaneurysm of the thoracic aorta. Four pseudoaneurysms developed post-trauma while 13 developed after aortic or cardiac surgery. The interval between initial operation and recognition of pseudoaneurysm varied from three months to eight years while the four post traumatic pseudoaneurysms presented 5 to 26 years post injury.

Information regarding the reversibility of hoarseness in cardiovalvular syndrome after correction of the underlying cardiovascular disease is limited. Of those reported [7], 12 of 14 cases resolved within 1 week to 3 years, with a duration of preexisting hoarseness ranging from 1 month to 10 years. It appears that the recurrent nerve palsy in cardiovalvular syndrome can be reversed: it depend on the degree and duration of palsy.

Also in our case, in whom symptoms and clinical evidence were revealed in a delayed phase (twenty days post-trauma), the anamnesis of a previous cervical blunt trauma was useful. Moreover, the patient presented with dysphonia, a very common symptom in patients with unilateral laryngeal paralysis. Finally, radiological imaging proved effective to yield the definitive diagnosis. In fact, in the past decade, CT and magnetic resonance imaging has been gradually assuming more importance in cardiovascular diagnosis [20]; advances in imaging methods also contributed to improved nonsurgical treatment of aortic pseudoaneurysms. Indeed, endovascular techniques are emerging as an alternative approach in the treatment of aortic disease, including post-traumatic aortic pseudoaneurysm [31-33]. A cell based therapy using Endothelial Progenitor Cells (EPCs) should be a possible revolutionary approach just used in several benign and malignant diseases [34-38]. EPCs biological properties are related to several biomarkers and pathogenic mechanisms involving Ca²⁺ related to vascular non vascular pathologies [39-52].

4 Conclusion

In conclusion, the specialist should consider the diagnosis of Ortner's syndrome after more common causes have been excluded, particularly in patients with cardiovascular disease. After trauma if the nerve is not damaged the hoarseness may be reversible once the pseudoaneurysm has been treated. Therefore, timely diagnosis and correction of the underlying disease is very important.

The definitive diagnosis of post-traumatic aortic pseudoaneurysm is now accomplished for the most part by using noninvasive imaging techniques. In patients who sustained major blunt chest or neck trauma presenting with hoarseness and dysphonia, a recurrent nerve palsy following post-traumatic aortic pseudoaneurysm must be included in the differential diagnosis.

Conflict of interest statement: Authors state no conflict of interest.

References

Aortic pseudoaneurysm associated to delayed recurrent nerve paralysis


